

Govindrao Wanjari College of Engineering & Technology, Nagpur

DVV-Criterion-02

2.6

Students Performance and Learning Outcomes

2.6.2

Attainment of Programme outcomes and course outcomes are evaluated by the institution

Index

Sr. No.	Contents	Session
	2.6.2- Attainment of Programme outcomes and evaluated by the institution	course outcomes are
1	Description of the method of measuring the level of attainment of Pos, PSOs and Cos with maximum of 200 words.	2021-2022
2	Attainment of Pos, PSOs and Cos (Sample copy)	2021-2022

2.6.2- Attainment of Programme outcomes and course outcomes are evaluated by the institution.

- **1.** Subject teacher maintains the evaluation data of Mid Semester Examination or Sessional Examination I and Sessional Examination II and Pre University Test, on regular basis and is used for assessing the learning outcomes.
- **2.** Subject teacher maintains the evaluation data of assignments, subject seminars and project if any, on regular basis and is used for assessing the learning outcomes.
- **3.** Student performance is evaluated on the basis of performance in academics, extra and co-curricular activities.
- **4.** The University results are analyzed for student performance.
- **5.** The Course End Survey Feedback for each subject is taken from students once in a semester which helps to verify the achievement of learning outcome.
- **6.** The institute collects the data about learning outcomes from students, employers through course end survey feedback.
- **7.** The feedback from parents is collected during parents—teachers meeting and considered for the improvement.
- **8.** Student's placement data is collected by the training & placement department. Data of graduates seeking higher education is collected by teachers and the training & placement department.
- 9. Participant's feedback on guest lectures, trainings, workshops are collected by faculty in-charge.

Assessment –Assessment is one or more processes, carried out by the institution, that identify, collect, and prepare data to evaluate the achievement of programme outcomes. The program outcomes and program specific outcomes are assessed with the help of course outcomes of the relevant courses through direct and indirect methods. The institution assesses the students continuously with the application of following assessment tools, as they progress through the program.

Evaluation –Evaluation is one or more processes, done by the evaluation team, for interpreting the data and evidence accumulated through assessment practices. Evaluation determines the extent to which the all outcomes are being achieved, and results in decisions and actions to improve the programme.

Mapping –Mapping is the process of representing, preferably in matrix form, the correlation among the parameters. It may be done for one to many, many to one, and many to many parameters.

CO-PO-PSO Mapping Methodology—The process of attainment of COs, POs, and PSOs starts from writing appropriate COs for each course in the four-year engineering degree program. The course outcomes are written by the respective faculty member using action verbs of learning levels as suggested by Bloom's Taxonomy. Bloom's Taxonomy promote higher forms of thinking in education, such as analyzing and evaluating concepts, processes, procedures, and principles, rather than just remembering facts (rote learning). It is most often used when designing educational, training, and learning processes. The three Domains of Learning are (1) Cognitive: Mental Skills (Knowledge), (2) Affective: growth in feelings or emotional areas (attitude or self) and (3) Psychomotor: manual or physical skills. Then, a correlation is established between COs, POs, and PSOs on the scale of 0 to 3. A mapping matrix of COs-POs -PSOs is prepared in this regard for all courses in the program. Course Outcomes and the CO-PO-PSO mapping matrix for a sample course are discussed below.

Direct Assessments are provided through direct examinations or observations of student knowledge or skills against measurable course outcomes. The knowledge and skills described by the course outcomes are mapped to specific problems on University Examination, internal exams and home assignment. Throughout the semester the faculty records the performance of each student on each course outcome.

Average attainment in direct method = University-Examination-(70%) + Internal Assessment (20%) + Assignment / Seminar / Viva / Project Work (10%)

Indirect Assessment is implemented by embedding them in Student Exit Survey, Employer Survey and Alumni Survey. Few of the POs are assessed based on relevant developed rubrics. Finally, program outcomes are assessed with above mentioned data and Program Assessment Committee concludes the PO attainment level.

Average attainment in indirect method = Average (Alumni survey + Employer survey + Exit survey)

The following scoring function is used to calculate the average attainment of each program outcomes.

PO /PSO Attainment (%) = (weightage: 80%) x (Average attainment in direct method) + (Weightage: 20%) x (Average attainment in indirect method)

Attainment level of POs, PSOs and COs

(Sample copy 2021-2022) Department of Electrical Engineering

GOVINDRAO WANJARI COLLEGE OF ENGINEERING & TECHNOLOGY, NAGPUR DEPARTMENT OF ELECTRICAL ENGINEERING

Internal Assesment Sheet

Program: B.E. Electrical Engineering

	CHARLES SECTION - FAR SECTION
	Course / Course Code: CONTROL SYSTE-II (BEELE701T)
C782.1	justify the practicals system for the desire specification through classical and state variable approach.
€ 702.2	Construct the design of optimal control with and without constraints.
C702.3	Analyse non linear and work with digital system and there further research.
£792.4	Study idea about optimal and descrete time control system.
C102.5	Adapt the knoledge of classical controller or compensator.
C202.6	Have an idea about optimal and descrete time control system

			Academic Year: 2021-22			
-			CT ASSESSMENT GHATAGE-80 %)			ASSESSEMENT (WE)(DIATAGE 3025)
			20 MARKS (20 %)		80 MARKS (80 %)	
ASSESSMENT TOOL	SESSIONAL I	SESSIONAL II	ATTENDANCE + (ASSIGNMENT/ SEMINARU G.D. /TECIL QUIZ)	PUT	UNIVERSITY EXAM	COURSE EXIT SURVEY
MAX MARKS	30 MARKS	30 MARKS	20 MARKS	80 MARKS	S0 MARKS	20 MARKS
COMAPPED	CO1, CO2	CO3, CO4	CO1, CO2, CO3, CO4, CO5, CO6	CO1, CO2, CO3, CO4, CO5, CO6	CO1, CO2, CO3, CO4, CO5, CO6	CO1, CO2, CO3 CO4, CO5, CO6
ROLL NO.			MARKS SCORE	ED		
1	10	12	18	34	52:	18
3	10	10	20	32	53	19
3	24	10	18	74	66	20
24	22	19	1.8	70	62	20
	22	21	-20	72	66	20
- 6	28	18	19	66	60	20
7	20	12	20	66	47	19
18	24	.10	18	62	62	20
9	28	7	19	7.6	71	19
10	30	1.1	18	32	47	19
- 11	12	13	18	58	54	20
12	12	14	19	74	58	20
13	28	11	19	66	68	20
15	28	11	. 19	72	68	20
15	11	4	18	32	57	17
16	16	20	17	62	53	19
17	12	16	19	34	56	18
150	10	15	18	76	58	20

19	. 10	12	18	32	51	17
20	11	12		36	58	18
21	20	- 1	18	54	.60	20
32	28	10	19	- 68	63	19
23		10	19	68	78	20
24	26	1.0	19	58	67	19
25	22	12	18	70	48	20
26.	12	14	3.0	34	70	18
29	13	12	19	36	57	17
28	12	15	18	35	62	18
29	12	9	18	78	40	20
30	20	1.8	38:	64	62	20
31	16	12	18	72	56	19
32	28	23	20	32	63	19
33	28	20	19	66	55	19
34	28	20	20	28.	47	18
335	30	18	18	72	44	20
36	1.2	12	19	74	56	20
37	30	11	18	72	65	20
38	11	17	18	32	56	18
39	12	25	20	72	56	20
40	30	14	19	76	46	20
-43	10	12	20	10	56	18
42	18	18	18	56	60	19
43	30	12	19	7.6	58	20
44	22	10	18	70	51	20
45	10	12	18	68	58	19
46	28	12	19	32	52	17
47	26	14	19	74	53	20
48	21	15	19	34	-55	18
49	30	10	18	32	64	18
50	10	12	17	70	58	20
51	30	15	19	64	50	19
52	24	1.3	18	42	68	20
53	28	19	18	72	- 59	20
54	26	19	20	68	70	20
55	28	14	. 18	32	52	17
56	30	15	18	76	74	20
57	16	19	18	AB	65	17
58	14	19	17	68	45	
59	13	19	19	66		17
ABSOLUTE	-				64	17
MARKS (40%)	12	12	8	32	32	8

TOTAL NO. OF	-					
APPEAR	59	59	59	58	59	59

NO.OF STUDENTS SCORING ABOVE ABSOLUTE MARKS	48	45	35	56	59	59
% OF STUDENTS SCORING ABOVE ABSOLUTE MARKS	81.36	76.27	59.32	96.55	100.00	100.00
CO	3)	3	3	3	3.	: 3:

Control of the last of the las	30	30% students scoring more than absolute marks	1
Tevel12:	40	40% students scoring more than absolute marks	2
Level Cl	50	50% students scoring more than absolute marks	3

	SESSIONAL I	SESSIONAL II	ASSIGNMENT/SEMINAR/GR DUP DISCUSSION /TECH	PUT	UNIVERSITY EXAM	COURSE EXIT
Internal CO Attainment =	CO1,CO2	CO3,CO4	CO1, CO2, CO3, CO4, CO5, CO6	CO1, CO2, CO3, CO4, CO5, CO6	CO1, CO2, CO3, CO4, CO5, CO6	CO1, CO2, CO3, CO4, CO5, CO6
	3	3	3	3	3	3

			CO Atta	inment			
	CO1	CO2	CO3	CO4	CO5	CO6	
Internal CO Attainment	3.00	3.00	3.00	3.00	3	3	
University CO	3	3	3	3	3	3	
Actual CO Attaiment = 60% UCOA + 40% ICOA	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Consolidated C	O attainmen	t of the subject	it.			3.00	3.00

Final CO attainment of the subject	60% Direct Attainment + 40% Indirect Attainment	3.00	1
------------------------------------	---	------	---

									0				
	nc()	MAPPING	FOR CO	URSE									
COs-PC	POI	PO2	PO3	P04	PO5	PO6	PO7	PO9	PO10.	POTT	PO12	PSO:1	150
	3	3	3	3	3	-3	3	3	3	3	3	- 3	3
1.03	2	2	2	1	2	1			1	1	1	2	2
002	3	2	1	1	2	1	1		1	1	2	1	2
003	2	3	2	2	1	1	1	1	1	1	2	2	2
CO 4	3	3	2	1	1	1	1	1	1	1	1	1	1
CO.5	2	2	2	1	1	1	1	- 1	1	1	1	1	1
CO 6	3	2	3	1	1	1	1	1	-1	1	1	1	1
OTAL	15	14	12	7	8	6.	6	4	6	6	8	8	9
VERAGE	2,50	2.33	2.00	1.17	1.33	1.00	1.00	0.67	1.00	1.00	1.33	1.33	1.50
POs - PS	Os ATTA	INMENT	FOR CO	URSE									-
	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO9	PO10	P011	PO12	PSO I	PSO:
	3	3	3 .	3	3	3	3	, 3	3	3	3	.3	3
COI	2.00	2.00	2.00	1.00	2.00	1.00	1.00		1.00	1.00	1.00	2.00	2.00
002	3.00	2.00	1.00	1.00	2.00	1.00	1.00		1.00	1.00	2.00	1,00	2.00
CO3	2:00	3.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
CO 4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
CO 5	2.00		3.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
CO-6	3.00	2.00	5.00	4,00									
		44.00	10.00	6.00	7.00	5.00	5.00	3.00	5.00	5.00	7.00	7.00	8.0
OTAL	12.00	11.00	10.00	1.00	1.17	0.83	0.83	0.75	0.83	0.83	1.17	1.17	1.3
VERAGE	2.00	1.83	1.67	1700	2027	10000			1	-117			

Attainment level of POs, PSOs and COs

(Sample copy 2021-2022) Department of Electrical Engineering

		Inte	ernal Assesmen	t Sheet		
		Program	- B.E. Mechanica	d Engineering		
		Semeste	r / Section :- VI S	emester B.E.		
	Course (Course Code: CC	INTROL SYSTEM!	NGINEERING (I	BEME 662 T.)	
	The course will	prepare tradent t	0			
CS02.1	Study the Con	not System cor	property and math	sematical models	ing of control system	11
C002.2	Understand To	ransfer Function	n system Represen	tation through B	Hock Diagram and S	Highar Flow
6,602.3	Learn System	Response & T	ime Domain Resp	onse Analysis		
47602-4	Understand C	ontrol system a	nalysis, root locus	concept and typ	nes of stability.	
C602.5	Study Frequen	nev Domain and	alvais, Bode & Pol	ar plot		
C692.6	Understand S	tate spacer pres	entation of Contin	uous Time syste.	ms	
		A	cademic Year;- 202	11-2022		ENDERFERT
			ASSESSMENT HATAGE-80 %)			ASSESSED AND ASSESSED ASSESSED ASSESSED AND ASSESSED AND ASSESSED ASSESSED.
		-20	MARKS (40 %)		80 MARKS (60 %)	
ASSESSMENT. TOOL	SESSIONAL I	SESSIONAL II	ATTENBANCE+ (ASSIGNMENT)	PUT	UNIVERSITY EXAM	SURVEY
MAX MARKS	30 MARKS	30 MARKS	20 MARKS	80 MARKS	SU MARKS	20 MARKS
CO MAPPED	COLCOL	C03, C04	CO1, CO2, CO3,	CO1, CO2, CO3, CO4, CO5, CO6	COLCOLCOL COLCOLCOL	COL. CO2. CO3.
	5,617,5105		CO4, CO5, CO6	CS SCORED	Land Comment	
ROLL NO.	70	10	17	39	55	17:
1	10	17	131	32	43	15.
1	11	16	19	21	61	14
4	21	14	17	21	38	12
- 5	13	21	18:	38	67	12
-0	14	15	19	21	39	10
7	13	20	20	46	63	8
*	12	15	17	31	44	30
7	17	13	19	10	60	10
10	22	19	18:	24	68	
11	15	11	19	24	70	-10
12	17	19	17	24	45	6.
33	9	26	18	32	63	20
15	25	10	18	24	50	19
16	15	14	17	29	78	11
17	21	17	19	/45	58	20
135	17	19	20	138	30	7
19	24	15	78	31	54	17
20	15:	17	18.	49	69	20
21	14	19	17.	.49	68	22
22	17	13	19	37	68	18
23	11.	17	18	31	62	12.
34	13	14	17:	60	65	1.6
25	28	21	19	39	64	16
-36	19	21	18:	29	6.2	316
25	20	13	20.	31	-48	17

OTAL NO. OF STUDENTS	72	72	42	70	72	72
MARKS (40%)	14					
ABSOLUTE	12	12	8	32	32	8
72	22	21	130	30	0	38
71	13	16	10	22	47	14
70	15	17	18	33	.0	3.16
0/4	27	26	18	-51	65	20
68	13	14	19	27	60	6
67	16	19	17	22	- 0	10
66	19	11	19	35	68	8
65	25	19	111	27	- 66	1.7
64	18	12	18	32	49	18
63	22	15	20	30	41	17
62	21	21	18	31	47	18
61	27	21	19	41	51	10
60	10	17	19	34	-58	38
59	14	11	18	31	- 53	12
58	15	15	19	AB	ti.	10
33	18	21	18"	37	31	12
36	21	14	17	23	0-	12
35	16	16	19	23	0	14
54	18	17	18	34	80	18
53	19	26	18	52	31	20
52	11	14	19	AB	45	
51	17	19	17	28	53	10
30	19	11	19	36	43	1
33	18	19	18	27	41	17
10	17	10	18	31	43	1/6
47	17	17	-20	33	53	17
46	20.	21	18	37	55	48
45	25	23	10	30	64	16
44	13	17	19	35	61	3.8
43	11	11	18	32	0	12
42	23	25	19	29	45	14
41	20	24	18	27	50	12
40	21	22	18	30	61	13
39	14	15	17	34	33	6.
37	13	12	18	21	.0	7
	13	16	20	35	61	12
30	12	(0.	19	32	81	18
35	15	Ti I	18	38	75	111
34	14	19	19	24	73	14
33	17	19	18	21	70	17
32	17	15	19	21	84	15
31	10	18	18	30	44	17
30	10	15	17	21	50	14
28	3.4	17	18	27	54	18

NO.OI STUDENTS SCORING	65	63	:72	32	62	.66
OF STUDENTS SCORING ABOVE	90.28	87.50	171.43	45.71	86.11	91.57
CO	3	3	3	2		3

Largest 1.3	30	30% students scoring more than absolute marks	-1
1 married 1	40	40% students scoring more than absolute marks	-12
Local Ch.	50	50% students scoring more than absolute marks	3

	SESSIONALI	SESSIONAL II	ASSIGNMENT/SEMI NARIGROUP	99.70	UNIVERSITY EXAM	SURVEY
Internal CO Attainment =	CO1,CO2 CO3,CO4 C		COL COL COLCO4, COS, CO6	CO1, CO2, CO3, CO4, CO5, CO6		CO4, CO5, CO6
	3	3	3	2	0	3

			CO	Attainmen	t		
	CO1	CO2	COS	CO4	COS	COS	
Internal CO Attainment	2.67	2.67	2.67	2.67	2.5	2.5	
University CO Attainment	0	0	0	0	0	0	
Actual CO Attaiment = 50% UCDA + 40%/COA	1.07	1.07	1.07	1,07	1.00	1.00	3.00
Consolidated C	O attainment	of the subj	ect			1.04	3.00

Final CO attainment of the subject	80% Direct Attainment + 20% Indirect Attainment	1.44

		POR PER			Personal Printers of the	PRODUCT STREET
EO 1			PUT POR	HIR PARK	100 100 100	STATE OF THE PARTY.
002	3	3	BOARD BOARD		2	THE RESERVE
003	3	3 1				3 3
004	2 2		1		-	3 2
0.5	3 7	1			1	1 2
0.6	3 3	2 2	DE DE			

2,67 2.83 1,67 1.00 1.00 1.00

POS - PSOS ATTAINMENT FOR COURSE

	FOI	P132	F03				-		9100	POLE	21001	84112	\$400 x	F943.2
		1100	1111	PO4	FOR	P130	807	LOB	1100	77000	-	3	3.00	3.
	- 3	3	3	3	3	-3	3	3	3	- 3	17		3.827	0.71
COL	1.07	1.07	1.07	1.07	0.71	0.36		0.56			0.36	0.71	1.07	
COL	3.07	1.07	1.07	1.07	0.71			0.36			0.71	0.36	1.07	
.003	2.07	1.07	0.71	1.07	0.36						0.71	0.71	1.07	
CO 4	1.07	1.07	0.71	1.07	0.71	0.361	0.36				0.36	0.33	0.67	0.67
CO 5	1.00	1.00	1.00	1.00	0.67					-	0.33	0.33	0.67	
COG	1.00	1.00	1,00	0.67	0.33				-	-	1	-		
								-	-		3.13	2.80	5.60	4.15
OTAL	6.27	6.27	5.56	5.93	-3.49	0.71	0.36	0.71			0.52	0.47	0.93	9.7
THAGE	2.02	1:04	0.93	0.99	0.5%	8,36	0.36	0.36			1000	-		