

#### Prof. Girish Kumar Electrical Engineering Department, IIT Bombay

<u>gkumar@ee.iitb.ac.in</u> (022) 2576 7436

## Linear and Planar Arrays

Arrays of Two Isotropic Sources

Principles of Pattern Multiplication

≻Linear Array of N Elements with Uniform Amplitude

- Broadside
- Ordinary Endfire
- Increased Directivity Endfire Array (IDEA)
- Scanning Array

Linear Arrays with Non-Uniform Amplitude

► Planar Arrays

## Array of Two Isotropic Point Sources

$$E = E_o e^{-j\beta r_1} + E_o e^{-j\beta r_2}$$

$$\beta = k = \frac{2\pi}{\lambda}$$

$$\begin{aligned} r_1 &\cong r + \frac{d}{2} \cos \phi \\ r_2 &\cong r + \frac{d}{2} \cos \phi \end{aligned} \ r >> \ \, d, \phi = 90 - \theta \end{aligned}$$

$$E = E_o e^{-j\beta r} \left[ e^{-j\beta \frac{d}{2}\cos\phi} + e^{j\beta \frac{d}{2}\cos\phi} \right]$$
$$= E_o e^{-j\beta r} \left[ e^{-j\frac{\psi}{2}} + e^{j\frac{\psi}{2}} \right]$$

$$E = 2E_o \cos\left(\frac{\psi}{2}\right) = 2E_o \cos\left(\frac{\pi d}{\lambda}\cos\phi\right)$$

$$\frac{d}{2}\cos\phi, \qquad \frac{r_2}{\theta}, \qquad r_1$$

$$\frac{d}{2}\cos\phi, \qquad \frac{d}{2}\cos\phi, \qquad \frac{d}{2}\cos\phi, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_2}{\theta}, \qquad \frac{r_1}{\theta}, \qquad \frac{r_1$$

### Two Isotropic Point Sources of Same Amplitude and Phase

$$E = \cos\left(\frac{d_r}{2}\cos\phi\right)$$
$$d_r = \frac{2\pi d}{\lambda} = \beta d$$
$$For \ d = \frac{\lambda}{2} \qquad E = \cos\left(\frac{\pi}{2}\cos\phi\right)$$
$$\boxed{\Phi \quad 0^\circ \quad 90^\circ \quad 60^\circ}$$
$$\boxed{E \quad 0 \quad 1 \quad 1/\sqrt{2}}$$

**HPBWs** = 60° in one plane and 360° in another plane



## **ORIGIN AT ELEMENT** 1

$$E = E_0 (1 + e^{j\psi})$$
  
=  $2E_0 e^{j\psi/2} \left(\frac{e^{j\psi/2} + e^{-j\psi/2}}{2}\right)$   
=  $2E_0 e^{j\psi/2} \cos \frac{\psi}{2}$   
Normalizing by setting  $2E_0 = 1$   
 $E = e^{j\psi/2} \cos \frac{\psi}{2}$   
=  $\cos \frac{\psi}{2} |\psi/2|$ 

y  

$$d_r \cos \phi$$
  
 $d = 0$   
 $d = 2$   
 $x$   
 $E_0 e^{+j\psi}$  (from source 2)  
 $\psi/2$   
 $E_0$  (from source 1)

#### Two Isotropic Point Sources of Same Amplitude and Opposite Phase



# Two Isotropic Point Sources of Same Amplitude with $90^{\circ}$ Phase Difference at $\lambda/2$



$$\left[\frac{d_r \cos\phi}{2} + \frac{\pi}{4}\right] + E_0 \exp\left[-j\left(\frac{d_r \cos\phi}{2} + \frac{\pi}{4}\right)\right]$$
$$E = 2E_0 \cos\left(\frac{\pi}{4} + \frac{d_r}{2}\cos\phi\right)$$
$$\text{Letting } 2E_0 = 1, \text{ and } d = \frac{\lambda}{2}$$
$$E = \cos\left(\frac{\pi}{4} + \frac{\pi}{2}\cos\phi\right)$$

| φ | <b>0</b> °   | <b>60°</b> | <b>90°</b>   | <b>120°</b> | <b>180°</b>  |
|---|--------------|------------|--------------|-------------|--------------|
| Ε | $1/\sqrt{2}$ | 0          | $1/\sqrt{2}$ | 1           | $1/\sqrt{2}$ |

## Two Isotropic Point Sources of Same Amplitude with $90^{\circ}$ Phase Difference at $\lambda/4$



Spacing between the sources is reduced to  $\lambda/4$ 

$$E = \cos\left(\frac{\pi}{4} + \frac{\pi}{4}\cos\phi\right)$$

| φ | <b>0</b> ° | <b>90°</b>   | <b>120°</b> | <b>150°</b> | <b>180°</b> |
|---|------------|--------------|-------------|-------------|-------------|
| Ε | 0          | $1/\sqrt{2}$ | 0.924       | 0.994       | 1           |

### Two Isotropic Point Sources Of Same Amplitude with Any Phase Difference



$$\psi = d_r \cos\phi + \delta$$

 $E = \cos\frac{\psi}{2}$ 

$$E = E_0 \left( e^{j\psi/2} + e^{-j\psi/2} \right)$$
$$= 2E_0 \cos \frac{\psi}{2}$$
Normalizing by setting  $2E_0 = 1$ 

## **Two Same Dipoles and Pattern Multiplication**



Dipole Pattern: 
$$E_0 = E'_0 \sin\phi$$

AF = 
$$\cos(\psi/2)$$
  
 $E = \sin\phi\cos\frac{\psi}{2}$   
where,  $\psi = d_r\cos\phi + \psi$ 

For  $\delta = 0$ , Array Factor (AF) will give max. radiation in Broadside Direction

## **PATTERN MULTIPLICATION**



#### N Isotropic Point Sources of Equal Amplitude and Spacing

$$E = 1 + e^{j\psi} + e^{j2\psi} + e^{j3\psi} + \dots + e^{j(n-1)\psi}$$
  
where  $\psi = \frac{2\pi d}{\lambda}\cos\phi + \delta = d_r\cos\phi + \delta$   
$$E e^{j\psi} = e^{j\psi} + e^{j2\psi} + e^{j3\psi} + \dots + e^{jn\psi}$$
  
$$E - E e^{j\psi} = 1 - e^{jn\psi} = \frac{1 - e^{jn\psi}}{1 - e^{j\psi}}$$
  
$$E = e^{j\xi} \frac{\sin(n\psi/2)}{\sin(\psi/2)} = \frac{\sin(n\psi/2)}{\sin(\psi/2)} \angle \xi$$
  
$$E_{norm} = \frac{\sin(n\psi/2)}{n\sin(\psi/2)} \qquad \xi = \frac{n-1}{2}\psi$$

d

#### Radiation Pattern of N Isotropic Elements Array



Radiation Pattern for array of n isotropic radiators of equal amplitude and spacing.



 $BWFN = 2\gamma_{01} = 60^{\circ}$  Field p

Field pattern of 4 isotropic point sources with the same amplitude and phase and spacing of  $\lambda/2$ .

## **Ordinary Endfire Array**



Field pattern of ordinary end-fire array of 4 isotropic point sources of same amplitude. Spacing is  $\lambda/2$  and the phase angle  $\delta = -\pi$ .

## Increased Directivity Endfire Array (IDEA)

$$\psi = d_r(\cos\phi - 1) - \frac{\pi}{n}$$

#### Hansen and Woodyard criteria

$$\psi = d_r (\cos \phi - 1)$$
$$E_{norm} = \sin \left(\frac{\pi}{2n}\right) \frac{\sin(n\psi/2)}{\sin(\psi/2)}$$

| Parameter   | Ordinary end<br>fire array | Endfire array with increased Directivity |  |
|-------------|----------------------------|------------------------------------------|--|
| HPBW        | <b>69°</b>                 | <b>38°</b>                               |  |
| FNBW        | <b>106°</b>                | <b>74</b> °                              |  |
| Directivity | 11                         | 19                                       |  |



Field patterns of end-fire arrays of 10 isotropic point sources of equal amplitude spaced λ/4 apart.
(a) Phase for increased directivity (δ = -0.6π),
(b) Phase of an ordinary end-fire array (δ = -0.5π).

## Array with Maximum Field in any Arbitrary Direction



Field pattern of array of 4 isotropic point sources of equal amplitude with phase adjusted to give the maximum at  $\phi = 60^{\circ}$  for spacing  $d = \lambda/2$