
UNIT – IV Syntax-Directed Translation 

 
Syntax Directed Translation in Compiler Design 

    

Syntax-Directed Translation (SDT) is a method used in compiler design to convert source 

code into another form while analyzing its structure. It integrates syntax analysis (parsing) 

with semantic rules to produce intermediate code, machine code, or optimized instructions. 

In SDT, each grammar rule is linked with semantic actions that define how translation should 

occur. These actions help in tasks like evaluating expressions, checking types, generating 

code, and handling errors. 

 

SDT ensures a systematic and structured way of translating programs, allowing information 

to be processed bottom-up or top-down through the parse tree. This makes translation 

efficient and accurate, ensuring that every part of the input program is correctly transformed 

into its executable form. 

 

SDT relies on three key elements: 

1. Lexical values of nodes (such as variable names or numbers). 

2. Constants used in computations. 

3. Attributes associated with non-terminals that store intermediate results. 

The general process of SDT involves constructing a parse tree or syntax tree, then computing 

the values of attributes by visiting its nodes in a specific order. However, in many cases, 

translation can be performed directly during parsing, without explicitly building the tree. 

 

SDD v/s SDT Scheme 

 

Syntax Directed Definition Syntax Directed Translation 

It is a context-free grammar where 

attributes and rules are combined and 

associated with grammar symbols and 

productions, respectively. 

It refers to the translation of a string into an 

array of actions. This is done by adding an 

action to a rule of context-free grammar. It is a 

type of compiler interpretation. 

Attribute Grammar Translation Schemes 

SDD: Specifies the values of attributes 

by associating semantic rules with the 

productions. 

SDT: Embeds program fragments (also called 

semantic actions) within production bodies. 

E → E + T { E.val := E1.val + T.val } E → E + T { print(‘+’); } 

Always written at the end of the body of 

production. 

The position of the action defines the order in 

which the action is executed (in the middle of 

https://www.geeksforgeeks.org/compiler-design-syntax-directed-definition/


Syntax Directed Definition Syntax Directed Translation 

production or at the end). 

More Readable More Efficient 

Used to specify the non-terminals. 
Used to implement S-Attributed SDD and L-

Attributed SDD. 

Specifies what calculation is to be done 

at each production. 

Specifies what calculation is to be done at each 

production and at what time they must be done. 

Left to right evaluation. Left to right evaluation. 

Used to know the value of non-

terminals. 
Used to generate Intermediate Code. 

 

Attributes in Syntax-Directed Translation 

An attribute is any quantity associated with a programming construct in a parse tree. 

Attributes help in carrying semantic information during the compilation process. 

Examples of Attributes: 

 Data types of variables 

 Line numbers for error handling 

 Instruction details for code generation 

Types of Attributes 

1. Synthesized Attributes 
 Defined by a semantic rule associated with the production at node N in the parse tree. 

 Computed only using the attribute values of the children and the node itself. 

 Mostly used in bottom-up evaluation. 

2. Inherited Attributes 
 Defined by a semantic rule associated with the parent production of node N. 

 Computed using the attribute values of the parent, siblings, and the node itself. 

 Used in top-down evaluation. 

Read about Differences Between Synthesized and Inherited Attributes. 

Attribute Grammars 

An Attributed Grammar is a special type of grammar used in compiler design to add extra 

information (attributes) to syntax rules. This helps in semantic analysis, such as type 

checking, variable classification, and ensuring correctness in programming languages. 

Think of it like a regular grammar with extra labels that help check things like variable types, 

correctness of expressions, and rule enforcement. 

 

 

 

https://www.geeksforgeeks.org/differences-between-synthesized-and-inherited-attributes/


Example of an Attribute Grammar 

Production 

Rule Semantic Rule 

D → T L L.in := T.type (Passes type information) 

T → int T.type := integer (Defines type as integer) 

T → real T.type := real (Defines type as real) 

L → L1 , id 

L1.in := L.in 

addtype (id.entry, L.in) (Passes type info to child and updates symbol 

table) 

L → id addtype (id.entry, L.in) (Adds type info to symbol table) 

 D → T L → The type from T is passed to L. 

 T → int / real → Assigns type integer or real to T. 

 L → id → Assigns type information to identifier (id). 

Grammar and Translation Rules 

SDT Scheme SDD Scheme 

E → E + T{ print('+') } E → E + T E.code = E.code || T.code || ‘+’ 

E → E – T{ print('-') } E → E – T `E.code = E.code || T.code || ‘-‘ 

E → T E → TE.code = T.code 

T → 0{ print('0') } T → 0T.code = '0' 

T → 1{ print('1') } T → 1T.code = '1' 

… … 

T → 9{ print('9') } T → 9T.code = '9' 

 

To evaluate translation rules, we can employ one depth-first search traversal on the parse tree. 

This is possible only because SDT rules don’t impose any specific order on evaluation until 

children’s attributes are computed before parents for a grammar having all synthesized 

attributes. Otherwise, we would have to figure out the best-suited plan to traverse through the 



parse tree and evaluate all the attributes in one or more traversals. For better understanding, 

we will move bottom-up in the left to right fashion for computing the translation rules .  

Syntax-Directed Translation (SDT) allows us to evaluate arithmetic expressions while 

parsing. It uses attributes associated with grammar symbols and rules to compute values as 

we process the parse tree. 

 

The following context-free grammar (CFG) defines an arithmetic expression with addition 

(+) and multiplication (*): 

 

E -> E + T     { E.val = E.val + T.val }   // PR#1 

E -> T         { E.val = T.val }           // PR#2 

T -> T * F     { T.val = T.val * F.val }   // PR#3 

T -> F         { T.val = F.val }           // PR#4 

F -> INTLIT    { F.val = INTLIT.lexval }   // PR#5 

Each production rule has a semantic action in {} that defines how values are computed. 

 E, T, and F are non-terminals (expression components). 

 INTLIT represents an integer literal (actual number). 

 val is an attribute used to store computed values at each step. 

Let’s evaluate the expression: S = 2 + 3 * 4 

Step 1: Build the Parse Tree 
The parse tree for 2 + 3 * 4 is structured like this: 

E 

/|\ 

E + T 

/ /|\ 

T T * F 

/ / | 

F F 4 

| | 

2 3 

Step 2: Apply Translation Rules (Bottom-Up Evaluation) 
We evaluate the expression step by step in a bottom-up manner (from leaves to root) 

F → 2 → F.val = 2 

F → 3 → F.val = 3 

F → 4 → F.val = 4 

T → F (T gets F’s value) → T.val = 3 

T → T * F → T.val = 3 * 4 = 12 

E → T (E gets T’s value) → E.val = 12 

E → E + T → E.val = 2 + 12 = 14 

Thus, the final computed value of 2 + 3 * 4 is 14. 

https://www.geeksforgeeks.org/what-is-context-free-grammar/


 

 Advantages of Syntax Directed Translation: 

Ease of implementation: SDT is a simple and easy-to-implement method for translating a 

programming language. It provides a clear and structured way to specify translation rules 

using grammar rules. 

Separation of concerns: SDT separates the translation process from the parsing process, 

making it easier to modify and maintain the compiler. It also separates the translation 

concerns from the parsing concerns, allowing for more modular and extensible compiler 

designs. 

Efficient code generation: SDT enables the generation of efficient code by optimizing the 

translation process. It allows for the use of techniques such as intermediate code generation 

and code optimization. 

Disadvantages of Syntax Directed Translation: 

Limited expressiveness: SDT has limited expressiveness in comparison to other translation 

methods, such as attribute grammars. This limits the types of translations that can be 

performed using SDT. 

Inflexibility: SDT can be inflexible in situations where the translation rules are complex and 

cannot be easily expressed using grammar rules. 

Limited error recovery: SDT is limited in its ability to recover from errors during the 

translation process. This can result in poor error messages and may make it difficult to locate 

and fix errors in the input program. 

 

 

 

 

 

 



S – Attributed and L – Attributed SDTs in Syntax Directed Translation 

 
  

In Syntax-Directed Translation (SDT), the rules are those that are used to describe how the 

semantic information flows from one node to the other during the parsing phase. SDTs are 

derived from context-free grammars where referring semantic actions are connected to 

grammar productions. Such action can be used in issues such as code generation like 

intermediate code, type checking, and so on. 

 

There are two main types of SDTs based on how attributes are associated with grammar 

symbols and how information is propagated: S-attributed SDTs and L-attributed SDTs At this 

point, the audience of an S-attributed SDT is just the set of instructions within the same 

statement that uses the variable, while the audience of an L-Attributed SDT is everyone 

within the statement but the first instruction that uses the variable. In general, these forms of 

SDTs are important in the construction of efficient compilers particularly in defining how 

attributes are computed in the parse tree. 

 

What is S-attributed SDT? 

An S-attributed SDT (Synthesized Attributed SDT) is one of the Syntax-Directed 

Translation schemes in which all attributes are synthesized. Predictive attributes are 

calculated as a result of attributes of the parse tree children nodes, their values are defined. 

Normally, the value of a synthesized attribute is produced at the leaf nodes and then passed 

up to the root of the parse tree. 

Key Features: 

 Bottom-Up Evaluation: Similarly, synthesized attributes are assessed in the bottom-up 

approach. 

 Suitable for Bottom-Up Parsing: Thus, S-attributed SDTs are more suitable to the 

approaches to bottom-up parsing, including the shift-reduce parsers. 

 Simple and Efficient: As all attributes are generated there are no inherited attributes 

involved thus making it easier to implement. 

Example: 

Let us consider a production role such that. 

E → E1 + T 

Hence, the synthesized attribute E.val can be calculated as: 

E.val = E1.val + T.val 

 

What is L-attributed SDT? 

 

An L-Attributed SDT (Left-Attributed SDT) also permits synthesized attributes as well as 

inherited attributes. Some of these attributes are forced attributes, which are inherited from 

the parent node, other attributes are synthetic attributes, which are calculated like S-attributed 

SDTs. L-attributed SDTs is an algebra of system design and the key feature of the algebra is 

that attributes can only be inherited on the left side of a particular production rule. 

Key Features: 

 Top-Down Evaluation: Evaluations of the inherited attributes are carried out in a manner 

that is top-down while those of the synthesized attributes are bottom–up. 

 Suitable for Top-Down Parsing: L-attributed SDTs are typical for the top-down 

approaches to parsing such as the recursive descent parsers. 

https://www.geeksforgeeks.org/parse-tree-in-compiler-design/


 Allows More Complex Dependencies: Since a language that has the capability of 

supporting both, inherent as well as synthesized attributes for its terms define more 

sophisticated semantic rules, then it is appropriate for a semantic network. 

Example: 

Consider a production rule. 

S → A B 

Now, the inherited attribute A.inh can be calculated as. 

A.inh = f(S.inh) 

likewise, B can also have synthesized attributes based on A : 

B.synth = g(A.synth) 

 

Backpatching in Compiler Design 

    

Backpatching is basically a process of fulfilling unspecified information. This information is 

of labels. It basically uses the appropriate semantic actions during the process of code 

generation. It may indicate the address of the Label in goto statements while producing TACs 

for the given expressions. 

Here basically two passes are used because assigning the positions of these label statements 

in one pass is quite challenging. It can leave these addresses unidentified in the first pass and 

then populate them in the second round. Backpatching is the process of filling up gaps in 

incomplete transformations and information. 

What is Backpatching? 

Backpatching is a method to deal with jumps in the control flow constructs like if statements, 

loops, etc in the intermediate code generation phase of the compiler. Otherwise, as the target 

of these jumps may not be known until later in the compilation stages, back patching is a 

method to fill in these destinations located elsewhere. 

 

Forward jumps are very common in constructs like the if statements, while loops, switch 

cases. For example, in a language with goto statements, the destination of a goto may not be 

resolved until and unless its label appears following the goto statement. Forward references 

i.e; Jumps from lower addresses to higher address it is a mechanism to maintain and solve 

these. 

Need for Backpatching: 

Backpatching is mainly used for two purposes: 

1. Boolean Expression 

Boolean expressions are statements whose results can be either true or false. A boolean 

expression which is named for mathematician George Boole is an expression that evaluates to 

either true or false. Let’s look at some common language examples: 

 My favorite color is blue. → true 

 I am afraid of mathematics. → false 

 2 is greater than 5. → false 

2. Flow of control statements: 

The flow of control statements needs to be controlled during the execution of statements in a 

program. For example: 

https://www.geeksforgeeks.org/introduction-to-boolean-logic/


 
The flow of control statements 

3. Labels and Gotos 

The most elementary programming language construct for changing the flow of control in a 

program is a label and goto. When a compiler encounters a statement like goto L, it must 

check that there is exactly one statement with label L in the scope of this goto statement. If 

the label has already appeared, then the symbol table will have an entry giving the compiler-

generated label for the first three-address instruction associated with the source statement 

labeled L. For the translation, we generate a goto three-address statement with that compiler-

generated label as a target. 

 

When a label L is encountered for the first time in the source program, either in a declaration 

or as the target of the forward goto, we enter L into the symbol table and generate a symbolic 

table for L. 

One-pass code generation using backpatching: 

In a single pass, backpatching may be used to create a boolean expressions program as well 

as the flow of control statements. The synthesized properties truelist and falselist of non-

terminal B are used to handle labels in jumping code for Boolean statements. The label to 

which control should go if B is true should be added to B.truelist, which is a list of a jump or 

conditional jump instructions. B.falselist is the list of instructions that eventually get the label 

to which control is assigned when B is false. The jumps to true and false exist, as well as the 

label field, are left blank when the program is generated for B. The lists B.truelist and 

B.falselist, respectively, contain these early jumps. 



A statement S, for example, has a synthesized attribute S.nextlist, which indicates a list of 

jumps to the instruction immediately after the code for S. It can generate instructions into an 

instruction array, with labels serving as indexes. We utilize three functions to modify the list 

of jumps: 

 Makelist (i): Create a new list including only i, an index into the array of instructions 

and the makelist also returns a pointer to the newly generated list. 

 Merge(p1,p2): Concatenates the lists pointed to by p1, and p2 and returns a pointer to 

the concatenated list. 

 Backpatch (p, i): Inserts i as the target label for each of the instructions on the record 

pointed to by p. 

Backpatching for Boolean Expressions 

Using a translation technique, it can create code for Boolean expressions during bottom-up 

parsing. In grammar, a non-terminal marker M creates a semantic action that picks up the 

index of the next instruction to be created at the proper time. 

For Example, Backpatching using boolean expressions production rules table: 

Step 1: Generation of the production table 

 
Production Table for Backpatching 

https://www.geeksforgeeks.org/bottom-up-or-shift-reduce-parsers-set-2/
https://www.geeksforgeeks.org/bottom-up-or-shift-reduce-parsers-set-2/


Step 2: We have to find the TAC(Three address code) for the given expression using 

backpatching: 

A < B OR C < D AND P < Q 

 
Three address codes for the given example 

Step 3: Now we will make the parse tree for the expression: 

 
Parse tree for the example 

The flow of Control Statements: 

Control statements are those that alter the order in which statements are executed. If, If-else, 

Switch-Case, and while-do statements are examples. Boolean expressions are often used in 

computer languages to 



 Alter the flow of control: Boolean expressions are conditional expressions that change 

the flow of control in a statement. The value of such a Boolean statement is implicit in 

the program’s position. For example, if (A) B, the expression A must be true if statement 

B is reached. 

 Compute logical values: During bottom-up parsing, it may generate code for Boolean 

statements via a translation mechanism. A non-terminal marker M in the grammar 

establishes a semantic action that takes the index of the following instruction to be 

formed at the appropriate moment. 

Applications of Backpatching 

 Backpatching is used to translate flow-of-control statements in one pass itself. 

 Backpatching is used for producing quadruples for boolean expressions during bottom-up 

parsing. 

 It is the activity of filling up unspecified information of labels during the code generation 

process. 

 It helps to resolve forward branches that have been planted in the code. 

 


