
UNIT-2

Relational Data Model, Relational Algebra and Calculus

PRELIMINARIES

In defining relational algebra and calculus, the alternative of referring to fields by position is more convenient than

referring to fields by name: Queries often involve the computation of intermediate results, which are themselves

relation instances, and if we use field names to referto fields, the definition of query language constructs must

specify the names of fields for all intermediate relation instances.

We present a number of sample queries using the following schema:

Sailors (sid: integer, sname: string, rating: integer, age: real)

Boats (bid: integer, bname: string, color: string)

Reserves (sid: integer, bid: integer, day: date)

The key fields are underlined, and the domain of each field is listed after the field name. Thus sidis the key for

Sailors, bid is the key for Boats, and all three fields together form the key for Reserves. Fields in an instance of one

of these relations will be referred to by name, or positionally, using the order in which they are listed above.

 RELATIONAL ALGEBRA

 Relational algebra is one of the two formal query languages associated with the re- lational model. Queries in

algebra are composed using a collection of operators. A fundamental property is that every operator in the algebra

accepts (one or two) rela-tion instances as arguments and returns a relation instance as the result.

Each relational query describes a step-by-step procedure for computing the desired answer, based on the order in

which operators are applied in the query.

Selection and Projection

Relational algebra includes operators to select rows from a relation (σ) and to project columns (π).These

operationsallow usto manipulate dataina single relation. Con -sider the instance of the Sailors relation shown in

Figure 4.2, denoted as S2. We can retrieve rows corresponding to expert sailors by using the σ operator. The

expression,

σrating>8(S2)

The selection operator σ specifies the tuples to retain through a selection condition. In general, the

selection condition is a boolean combination (i.e., an expression using the logical connectives

𝖠 and ∨) ofterms that have the formattribute op constant or attribute1 op attribute2, where op isone ofthe

comparison operators <, <=, =, =, >=, or >.

The projection operator π allows us to extractcolumns from a relation; for example, we can find out

allsailor names and ratings byusing π. The expression πsname,rating(S2)

Supposethatwewantedtofindoutonlytheagesofsailors.Theexpression

πage(S2)

asingletuplewithage=35.0appearsintheresultoftheprojection.Thisfollowsfrom

the definition of a relation as a set of tuples. However, our discussion of relational algebra and calculus

assumes that duplicate elimination is always done so that relations are always sets of tuples.

SetOperations

The following standard operations on set sareal so available inrelational algebra:union(U),

intersection(∩),set-difference(−),andcross-product(×).

 Union: R u S returns a relation instance containing all tuples that occur in either relation instance R or

relation instance S (or both). R and S must be union-compatible, and the schemaofthe resultis defined

to be identicalto the schema ofR.

 Intersection: R ∩S returns a relation instance containing all tuples that occur in both R and

S.TherelationsR andS must beunion-compatible, andtheschemaoftheresult isdefinedto beidentical to

the schema of R.

 Set-difference: R − S returns a relation instance containing all tuples that occur in Rbut not in S. The

relations R and S must be union-compatible, and the schema of the result is defined tobe identicalto

the schema of R.

 Cross-product:R×Sreturnsarelation instancewhoseschemacontainsallthefieldsof

R(inthesame orderastheyappearinR)followedbyallthefieldsofS

(inthesameorderastheyappearinS). TheresultofR × Scontainsonetuple〈r, s〉(the concatenation of tuples

r and s) for each pair of tuples r ∈ R, s ∈ S. The cross-product opertion is sometimes called Cartesian

product.

RELATIONALMODEL

Relational model is simple model is simple model in which database is represented as acollection of “relations”

where each relation is represented by two-dimensional table

The relational model was founded byE.F.Coddof the IBM in 1972.The basicconcept in

the relational model is that of a relation.

Properties:

o Itiscolumnhomogeneous.Inotherwords,inanygivencolumnofatable,all items are of

the same kind.

o Each item is a simple number or a character string. That is a table must be in first

normal form.

o Allrowsofatableare distinct.

o Theorderingofrowswithinatableis immaterial.

o Thecolumnofatableareassigneddistinctnamesandtheorderingofthese columns in

immaterial.

Domain,attributestuplesandrelational:

Tuple:

Eachrowinatablerepresentsarecordandiscalledatuple.Atable containing ‘n’ attributes

in a record is called is called n-tuple.

Attributes:

The name of each column in a table is used to interpret its meaning and is called

anattribute.Each table is called a relation.

Intheabovetable,account_number,branchname,balancearetheattributes.

Domain:

A domain is a set of values that can be given to an attributes. So every attribute in a

table has a specific domain. Values to these attributes can not be assigned outside

their domains.

Relation:

Arelationconsistof

o Relationalschema

o Relationinstance

Relationalschema:

Arelationalschemaspecifiestherelation’name,itsattributesandthedomainofeach

attribute. If R is the name of a relation and A1,A2,… and is a list of attributes

representing R then R(A1,A2,…,an) is called a relational schema. Each attribute in

this relational schema takes a value from some specific domain called domain(Ai).

Example:

PERSON(PERSON_IDinteger,NAME:STRING,AGE:INTEGER,ADDRESS:string)

Total number of attributes in a relation denotes the degree of a relation.since the

PERSON relation schemea contains four attributes ,so this relation is of degree 4.

RelationInstance:

Arelationalinstancedenotedasrisacollectionoftuplesforagivenrelational schema at a

specific point of time.

A relation state r to the relations schema R(A1,A2…,An) also denoted by r® is a set

of n-tuples

R{t1,t2,…tm}

Whereeachn-tupleisanorderedlistofnvalues

T=<v1,v2,….vn>

Whereeachvibelongstodomain(Ai)orcontainsnullvalues.

Therelationschemaisalsocalled‘intension’andtherelationstateisalsocalled ‘extension’.

Eg:

Relationschemaforstudent:

STUDENT(rollno:strinhg,name:string,city:string,age:integer)

Relationinstance:

Student:

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Keys:

Superkey:

Asuperkeyisanattributeorasetofattributesusedtoidentifytherecordsuniquelyin a

relation.

Forexample,customer-id,(cname,customer-id),(cname,telno)

Candidatekey:

Super keys of a relation can contain extra attributes . candidate keys are minimal

super keys. i.e, such a key contains no extraneous attribute. An attribute is called

extraneous if even after removing it from the key, makes the remainingattributes still

has the properties of a key.

InarelationR,acandidatekey forRisasubsetofthesetofattributesofR,which have the

following properties:

 Uniqueness: notwodistincttuples inRhavethesamevalues for

thecandidatekey

 Irreducible: Nopropersubsetofthecandidatekeyhasthe

uniquenesspropertythat isthecandidatekey.

 Acandidatekey’svaluesmustexist.Itcan’tbe null.

 The values of a candidate key must be stable. Its value can not change outside

the control of the system.

Eg:(cname,telno)

Primarykey:

The primary key is the candidate key that is chosen by the database designer as the

principal means of identifying entities with in an entity set. The remaining candidate

keys if any are called alternate key.

RELATIONALCONSTRAINTS:

Therearethreetypesofconstraintsonrelationaldatabasethat include

o DOMAINCONSTRAINTS

o KEYCONSTRAINTS

o INTEGRITYCONSTRAINTS

DOMAINCONSTRAINTS:

Itspecifiesthateachattributeinarelationanatomicvaluefromthecorresponding domains. The

data types associated with commercial RDBMS domains include:

o Standardnumericdatatypesforinteger

o Real numbers

o Characters

o Fixedlengthstringsandvariablelength strings

Thus,domainconstraintsspecifiestheconditionthatwetoputoneachinstanceofthe

relation. So the values that appear in each column must be drawn from the domain

associated with that column.

Rollno Name City Age

101 Sujit Bam 23

102 kunal bbsr 22

Keyconstraints:

This constraints states that the key attribute value in each tuple msut be unique .i.e, no

two tuples contain the same value for the key attribute.(null values can allowed)

Emp(empcode,name,address).hereempcodecanbeunique

Integrityconstraints:

Therearetwotypesofintegrityconstraints:

o Entityintegrityconstraints

o Referentialintegrityconstraints

Entityintegrityconstraints:

Itstatesthatnoprimarykeyvaluecanbenullandunique.Thisisbecausetheprimarykey is used to

identify individual tuple in the relation. So we will not be able to identify the records

uniquely containing null values for the primary key attributes. This constraint is specified

on one individual relation.

Referentialintegrityconstraints:

Itstatesthatthetupleinonerelationthatreferstoanotherrelationmustrefertoan existing tuple in

that relation. This constraints is specified on two relations .

Ifacolumnisdeclaredasforeignkeythatmustbeprimarykeyofanother table.

Department(deptcode,dname)Heret

hedeptcodeistheprimarykey.

Emp(empcode,name,city,deptcode).

Here the deptcode is foreign key.

CODD'SRULES

Rule 1:Theinformation Rule.

"All information in a relational data base is represented explicitlyat the logical level and

in exactly one way - by values in tables."

Everythingwithinthedatabaseexistsintablesandisaccessedviatableaccess routines.

Rule2 : Guaranteed accessRule.

"Each and every datum (atomic value) in a relational data base is guaranteed to be

logically accessible by resorting to a combination of table name, primary key value and

column name."

To access any data-item you specify which column within which table it exists, there isno

reading of characters 10 to 20 of a 255 byte string.

Rule 3: Systematic treatment ofnullvalues.

"Null values (distinct from the empty character string or a string of blank characters and

distinct from zero or any other number) are supported in fully relational DBMS for

representing missing information and inapplicable information in a systematic way,

independent of data type."

If data does not exist or does not apply then a value of NULL is applied, this is

understood by the RDBMS as meaning non-applicable data.

Rule4: Dynamicon-line catalogbasedon therelationalmodel.

"The data base description is represented at the logical level in the same wayas-ordinary

data,sothatauthorizeduserscanapplythesamerelationallanguagetoitsinterrogationas they

apply to the regular data."

The Data Dictionary is held within the RDBMS, thus there is no-need for off-line

volumes to tell you the structure of the database.

Rule5:Comprehensivedatasub-language Rule.

"A relational system may support several languages and various modes of terminal use

(for example, the fill-in-the-blanks mode). However, there must be at least one language

whose statements are expressible, per some well-defined syntax, as character strings and

that is comprehensive in supporting all the following items

 DataDefinition

 ViewDefinition

 DataManipulation(Interactiveandbyprogram).

 IntegrityConstraints

 Authorization.

Every RDBMS should provide a language to allow the user to

query the contents of the RDBMS and also manipulate the contents

of the RDBMS.

Rule 6 :.ViewupdatingRule

"Allviewsthataretheoreticallyupdateablearealsoupdateablebythesystem."

Notonlycantheusermodifydata,butsocantheRDBMSwhentheuserisnotlogged-in.

Rule7:High-levelinsert,updateanddelete.

"The capability of handling a base relation or a derived relation as a

single operand applies not only to the retrieval of data but also to

the insertion, update and deletion of data."

The user should be able to modifyseveral tables bymodifyingthe

view to which theyact as base tables.

Rule8 :Physicaldataindependence.

"Application programs and terminal activities remain

logicallyunimpaired whenever any changes are made in either

storage representations or access methods."

Theusershouldnotbeawareofwhereoruponwhichmediadata-filesare stored

Rule9 : Logicaldataindependence.

"Application programs and terminal activities remain logically

unimpaired when information-preserving changes of any kind that

theoretically permit un-impairment are made to the base tables."

User programs and the user should not be aware of any changes to

the structure of the tables (such as the addition of extra columns).

Rule10:Integrityindependence.

"Integrity constraints specific to a particular relational data base

must be definable in the relational data sub-language and storable in

the catalog, not in the application programs."

If a column only accepts certain values, then it is the RDBMS

which enforces these constraints and not the user program, this

means that an invalid value can never be entered into this column,

whilst if the constraints were enforced via programs there is always

a chance that a buggyprogram might allow incorrect values into the

system.

Rule11:Distribution independence.

"A relational DBMS has distribution independence."

The RDBMS may spread across more than one system and across

several networks, however to the end-user the tables should appear

no different to those that are local.

Rule12:Non-subversionRule.

"If a relational system has a low-level (single-record-at-a-time)

language, that low level cannot be used to subvert or bypass the

integrity Rules and constraints expressed in the higher level

relational language (multiple-records-at-a-time)."

Tuple Relational Calculus (TRC) in DBMS

Tuple Relational Calculus (TRC) is a non-procedural query language used in relational

database management systems (RDBMS) to retrieve data from tables. TRC is based on the

concept of tuples, which are ordered sets of attribute values that represent a single row or

record in a database table.

TRC is a declarative language, meaning that it specifies what data is required from the

database, rather than how to retrieve it. TRC queries are expressed as logical formulas that

describe the desired tuples.

Syntax: The basic syntax of TRC is as follows:

{ t | P(t) }

where t is a tuple variable and P(t) is a logical formula that describes the conditions that the

tuples in the result must satisfy. The curly braces {} are used to indicate that the expression is

a set of tuples.

For example, let’s say we have a table called “Employees” with the following attributes:

Employee ID

Name

Salary

Department ID

To retrieve the names of all employees who earn more than $50,000 per year, we can use the

following TRC query:

{ t | Employees(t) ∧ t.Salary > 50000 }

In this query, the “Employees(t)” expression specifies that the tuple variable t represents a

row in the “Employees” table. The “∧” symbol is the logical AND operator, which is used to

combine the condition “t.Salary > 50000” with the table selection.

The result of this query will be a set of tuples, where each tuple contains the Name attribute

of an employee who earns more than $50,000 per year.

TRC can also be used to perform more complex queries, such as joins and nested queries, by

using additional logical operators and expressions.

While TRC is a powerful query language, it can be more difficult to write and understand

than other SQL-based query languages, such as Structured Query Language (SQL). However,

it is useful in certain applications, such as in the formal verification of database schemas and

in academic research.

Tuple Relational Calculus is a non-procedural query language, unlike relational algebra.

Tuple Calculus provides only the description of the query but it does not provide the methods

to solve it. Thus, it explains what to do but not how to do it.

Tuple Relational Query

In Tuple Calculus, a query is expressed as

{t| P(t)}

where t = resulting tuples,

P(t) = known as Predicate and these are the conditions that are used to fetch t. Thus, it

generates a set of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬).

It also uses quantifiers:

∃ t ∈ r (Q(t)) = ”there exists” a tuple in t in relation r such that predicate Q(t) is true.

∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r.

Domain Relational Calculus (DRC)

Domain Relational Calculus is similar to Tuple Relational Calculus, where it makes a list of

the attributes that are to be chosen from the relations as per the conditions.

{<a1,a2,a3,.....an> | P(a1,a2,a3,.....an)}

where a1,a2,…an are the attributes of the relation and P is the condition.

Domain Relational Calculus in DBMS

Database management systems (DBMS) employ the non−procedural query language known

as Domain Relational Calculus (DRC). DRC focuses simply on what data to collect without

outlining the techniques for retrieval, as opposed to Relational Algebra, which provides

methods and procedures for fetching data. It offers a declarative method of database

querying.

Syntax

{ <x1, x2, ..., xn> | P(x1, x2, ..., xn) }

Here,

<x1, x2, ..., xn> refers to the resulting domain variable

P(x1, x2, ..., xn) refers to the condition equivalent to the predicate calculus.

Example 1

This example shows us to solve the query which is how to find the names of students who are

20 years old from the given table.

Students

ID Name Age

1 John 20

2 Sarah 22

3 Emily 19

4 Michael 21

DRC Expression

 {<Name> | \exists ID, Age (<ID, Name, Age> ϵ Students ∧ Age = 20)}

Output

Name

John

Relational Algebra

Relational algebra is a procedural query language. It gives a step by step process to obtain the

result of the query. It uses operators to perform queries.

It is also a conceptual language. By this we mean that the queries made in it are not run on

the computer so it is not used as a business language. However, this knowledge allows us to

understand the optimization and query execution of RDBMS.

Basic Set Oriented Operations: It is also known as traditional set oriented operations. This

operation is derived from the mathematical set theory. Following operations include in basic

set oriented operations. All operations are binary operations which means that operations

applies to pair of relations.

o UNION

o INTERSECTION

o DIFFERENCE

o CARTERSION PRODUCT

Following conditions are satisfied is both the relations are union

o Backward Skip 10sPlay Video All the relations must have the same attribute

o Each column in the first relation must have the same data type as the corresponding

column in the second relation. The names of the corresponding attributes need not be

the same.

For example: Consider two relations P and Q such that degrees of P and Q are m and n.

Degree must be equal then m=n.

Special Relational Operations: These operations focus on the structure of the tuples. These

operations not only add power to algebra but also simplify general questions that are too long

to express using set oriented operations. Special relational operations include the following

operations:

o JOIN

o SELCTION

o Projection

o Division

Let's explain each one by one in detail.

1. Select Operation:

o The select operation also known as restriction operation results in a new relation that

contains those rows of relation that satisfy a specified condition.

o The select operation selects tuples that satisfy a given predicate.

o It is denoted by sigma (σ).

1. Notation: σ p(r)

Where:

σ is used for selection prediction

r is used for relation

p is used as a propositional logic formula which may use connectors like: AND OR and

NOT. These relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

Input:

1. σ BRANCH_NAME="perryride" (LOAN)

Output:

Features of Select operation:

o It is a unary operation because works only a single relation.

o The resulting table has the same degree as that of the original table. This means that

the number of columns in both the relations is same.

o The number of rows of the resulting relations is always less than or equal to the

original relation.

o It operates on each row of the relation independently.

2. Project Operation:

o This operation shows the list of those attributes that we wish to appear in the result.

Rest of the attributes are eliminated from the table.

o It is denoted by ∏ and the attributes to be retrieved appear as subscripts separated by

commas and relations name is given in parenthesis following the PI.

1. Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

Input:

1. ∏ NAME, CITY (CUSTOMER)

Output:

Features of Project operation:

o It is a unary operation i.e. it can operate only a single relation.

o The degree of the resulting relation is equal to the number of attributes specified in

the attribute list

o If the attribute list contains a primary key attribute then the number of tuples in the

resulting relation is equal to the number of tuples in the original relation.

o Non-commutative: It does not hold the commutative property.

o Duplicate Elimination: This operation removes the duplicate rows from the table

which results in a valid relation knows as duplicate elimination.

3. Union Operation:

o The Union operation of two relations results in a new relation containing rows from

both relations with duplicates removed.

o Suppose there are two tuples R and S. The union operation contains all the tuples that

are either in R or S or both in R & S.

o It eliminates the duplicate tuples. It is denoted by ∪.

1. Notation: R ∪ S

A union operation must hold the following condition:

o R and S must have the attribute of the same number.

o Duplicate tuples are eliminated automatically.

Features of Union operation:

o Input relations must be union compatible.

o Commutativity: This means that the result of (R ∪ S) is same as that of (S ∪ R).

o Associativity: This mean that R ∪ (S ∪ O) = (R ∪ S) ∪ O where R, S and O are

relations.

Input:

1. ∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR)

4. Intersection:

o Suppose there are two tuples R and S. The set intersection operation contains all

tuples that are in both R & S.

o It is denoted by intersection ∩.

1. Notation: R ∩ S

Features of Intersection operation:

o Input relations must be union compatible.

o Commutativity: This means that result of (R ∩ S) is same as that of (S ∩ R).

o Associativity: This mean that R ∩ (S ∩ O) = (R ∩ S) ∩ O where R, S and O are

relations.

Example: Using the above DEPOSITOR table and BORROW table

5. Difference:

o The difference of two relations results in a new relation that contains tuples that occur

in the first relation but not in the second relation.

o Suppose there are two tuples R and S. The set difference operation contains all tuples

that are in R but not in S.

o It is denoted by intersection minus (-).

1. Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

1. ∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

Features of Set Difference operation:

o Input relations must be union compatible.

o They are not commutative. This means that the result of R - Sis not the same as the

result S - P.

o They are not associative. This means that result of Q - (R - S) is not the same as the

result of (Q - S) - R where Q, S and R are relations.

o Intersection can be expressed as difference (-) operations:

(R ∩ S) = R - (R - S)

But writing the equation with a single intersection operation is more convenient than

involving a pair of difference operations. Here R and S unions are favorable.

6. Cartesian product

o The Cartesian product is used to combine each row in one table with each row in the

other table. It is also known as a cross product.

o It is denoted by X.

o It is a binary relation which means that it always operates on two relations.

Properties of Cartesian product operation:

o The relations to which Cartesian product operation is applied need not necessary to be

union compatible.

o The total number of rows in the result operation is equal to the product of the number

of rows in the first and second relations, i.e.

Total number of tuples of data = Total number of tuples of E + Total number of tuples

of D

o The resulting relation may have duplicate properties if some properties of the two

relations are defined on common domains.

o The resulting degree of action is equal to the sum of the degrees of all relations

Degree of E = Degree of E + Degree of D

o Commutativity: This means that result of E X D is same as that of D X

o Associativity: This mean that E X (D X F) = (E X D) X F where E, D and F are

relations.

7. Rename Operation:

The rename operation is used to rename the output relation. It is denoted by rho (ρ). If no

rename operation is applied then the names of the attributes in a resulting relation are the

same as those in the original relation and in the same order.

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

1. ρ(STUDENT1, STUDENT)

Note: Apart from these common operations Relational algebra can be used in Join operations.

8. Join Operation:

A join operation combines two or more relations to form a new relation such that new

relation contains only those tuples from different relations that satisfy the specified criteria. It

forms a new relation which contains all the attributes from both the joined relations whose

tuples are those defined by the restrictions applies i.e. the join condition applied on two

participating relations. The join is performed on two relations, who have one or more

attributes in common. These attributes must be domain compatible i.e. they have same data

type. It is a binary operation. The Join operation is denoted by a Join symbol. The general

from of representing a join operation on two relations P and Q is

1. P⋈ <join_condion> Q

When we use equality operator in the join condition then such a join is called EQUI Join. It is

mostly commonly used Join.

In the above both table, suppose we want to know the employee information with department

name in which each employee is working. Now the employee information is in the Emp

relation and Department name information is in dept relation. So to retrieve the columns from

both the tables at same time, we need to join the EMP and DEPT relations. The relations can

be joined over the column Dept_ID that exist in EMP relation and the Dept_no that exist in

the DEPT relation and are domain compatible. Thus the result of EQUI Join where the

condition is that Dept_Id attributes values the EMP relation should be equal to the Dept_No

attribute values in the DEPT relation, the result is shown below.

Another is known as natural join in which there is no need to explicitly name the columns. A

join is performed by joining all columns from the first relation of any column to another

relation with the same name. The result of natural join is as

The natural join may also been referred to as INNER JOIN. Another type of JOIN in which a

relation is joined to itself by comparing values with a column of the relation is called a self-

join.

In the EMP relation, the attribute EMP_ID shows employee'code, ENAME and Mang_Id

under which employee is working. In this, some employee are not having Mang_Id i.e. their

value is null because they act as a manager itself.

Features of Join Operation:

o Like the cartersion product, join operations are commutative. Using this property, we

can choose which relation can be the inner and which one the outer while joining two

relations. If P and Q are two relations then,

P⋈ Q = Q ⋈ P

o Rows whose join attribute is null do not appear in the resulting relation.

o We can also join more than two relations by increasing the complexity.

o Joins are generally used when a relationship exists between relations such as where

the join condition is based on the primary key and foreign key columns.

o Join is a very powerful operator and together with projection form a base for

normalization i.e. theoretical support for designing database relations.

o If the attributes on which the join is performed have the same name in both the

relations then renaming is necessary for the EQUIJOIN operation and unnecessary for

the NATURAL JOIN operation because the former i.e. EQUI JOIN both exist as a

result of the common attribute relation but the latter In i.e., natural additive

consequent relations have only one common property.

Division Operation:

The division operation results in a new relation such that every tuple appearing in the

resulting relation must exist in the dividend relation. In the combination of each tuple in the

denominator relation. It is a binary operation that operates on Subject Relation "÷" Course

Relation

The resultant relation is: Result Relation

Properties of Division Relation:

o It is a binary operation as it operators on two relations

o The division operation is suited to queries that include the phrase "for all".

o It is very rarely used in database applications.

	Selection and Projection
	SetOperations
	Domain Relational Calculus in DBMS
	Syntax
	Example 1
	DRC Expression
	Output

	Relational Algebra
	1. Select Operation:
	2. Project Operation:
	3. Union Operation:
	4. Intersection:
	5. Difference:
	6. Cartesian product
	7. Rename Operation:
	Note: Apart from these common operations Relational algebra can be used in Join operations.

	8. Join Operation:

